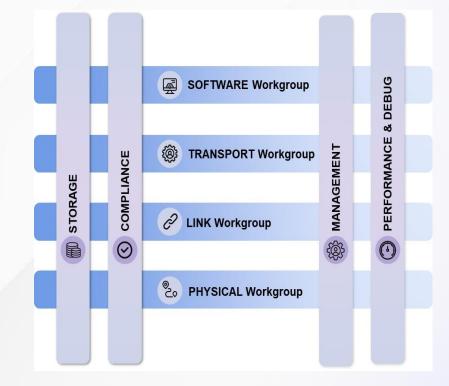
Introduction for

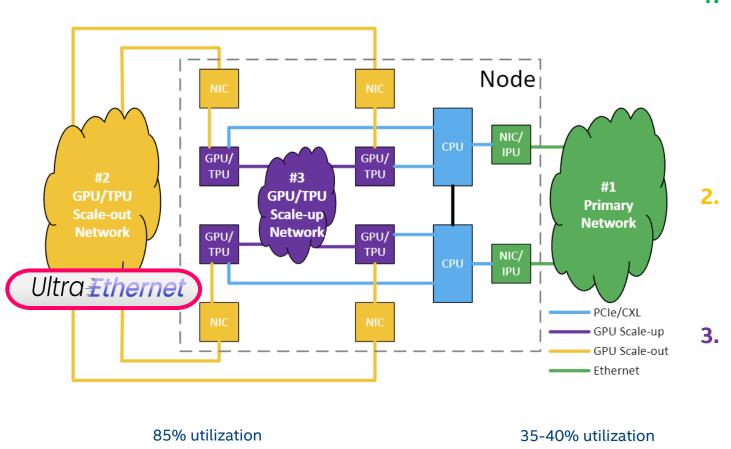
community

Uri Elzur, UEC Technical Advisory Committee Chair

Shrijeet Mukherjee, Enfabrica

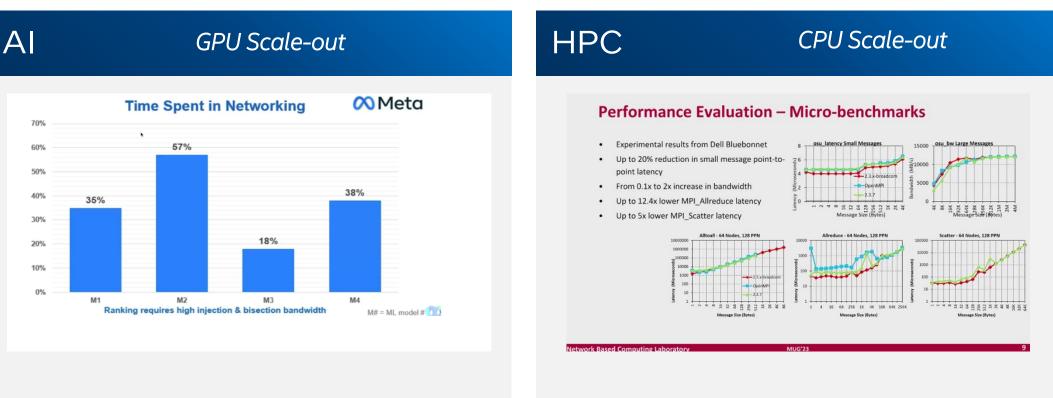

July 15th, 2024

Copyright @2023 Ultra Ethernet Consortium. All rights reserved


An Ethernet-based, open, interoperable, high performance, full-communications stack architecture to meet the growing network demands of AI & HPC at scale

>80 member companies >800 active members

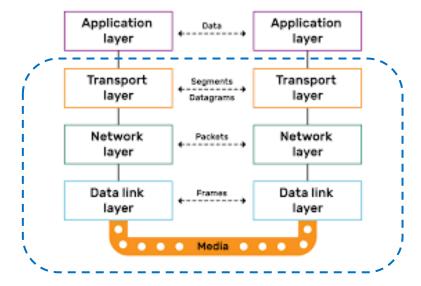
AI/HPC Networks of Interest: Basic Characteristics

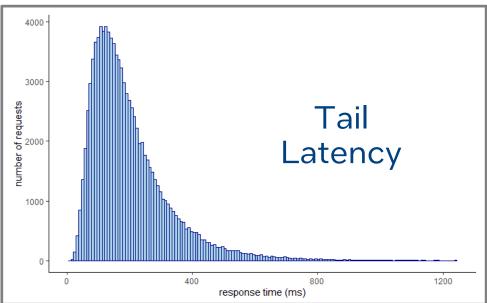

1. Primary DC network

- Used by all 3 deployment models
- Main network for some HPC At Scale
- Very large scale: up to 100K-1M Endpoints
- Distance: >150m ; RTT ~100 uS +; BW/GPU ~10GB/S
- Storage attached e.g., over RoCE RDMA
- Network semantics
- GPU/TPU Scale-Out Network
- DL/Inference Cluster -10k nodes and 🔊
- Distance: <100m ; RTT <10 uS + ; BW ~100GB/S
- Main network for some HPC At Scale
- Network semantics

GPU/TPU Scale-Up Network

- Within a node; small scale e.g., 256 XPU?
- Distance: ~1m ; RTT ~1 uS +; BW ~1200 GB/S7
- Direct connect and/or switched
- Memory and Network semantics


The Network Directly Influences Workload's Performance !



- Framework coordinated systolic
- High Bandwidth
- Large messages
- In Network Compute 2x potential

- MPI
- Small messages Latency sensitive
- High packet rate
- Existing application support required

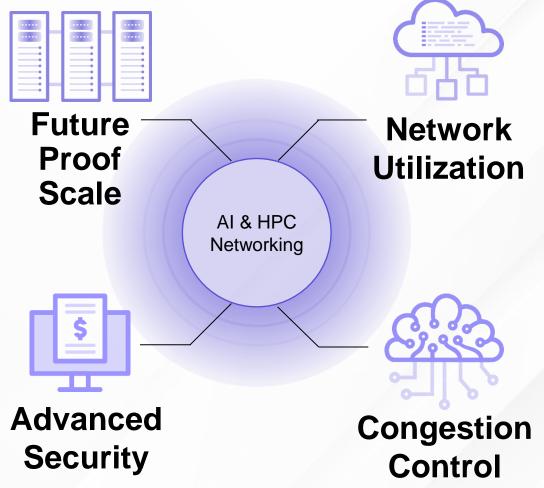
AI/HPC Common Requirements

- Transport primitives for
 - Large Scale
 - Multi pathing
 - Relaxed ordering
 - Modernized Congestion Control
 - Optimized RDMA
 - Performance bandwidth, latency, tail latency, Packets/S
 - High network utilization
 - Stability and Reliability

Key goals: high utilization <u>&</u>low tail latency!

TODAY's RDMA TRANSPORT ARE DEFICIENT

- Lack of multipathing makes load balancing difficult and solutions brittle
- Requires in-order packet delivery
- Go-back-n: massively inefficient for dropped packets necessitates a "lossless" network
- DCQCN congestion control is brittle and hard to tune
 - Specific to workload and network details


Challenges with scale

It's time to modernize RDMA

UEC TRANSPORT ADDRESSES GRAND CHALLENGES

- Future proof system scale with up to 1M endpoints
- Improved network utilization with multi-path routing
- Lower tail latency with flexible packet ordering
- Faster congestion control response times
- Modernized & optimized RDMA operations and APIs
- Security built-in from the beginning
- End-To-End telemetry provides improved network visibility

Highest infrastructure utilization at ultra-high scale

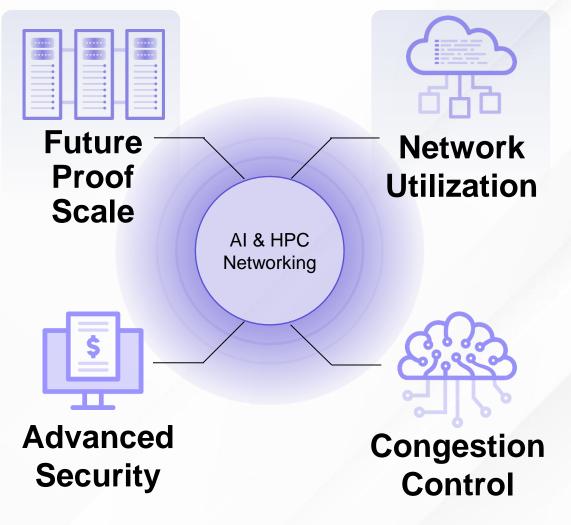
Ultra *Ethernet*

UEC Stack Overview (partial feature list)

- Software API
 - Libfabrics 2.0 with extensions
- New Transport Layer
 - Multi-pathing
 - Packet spraying
 - Ordered (ROD) and un-ordered (RUD)
 - Lossy (no PFC) or Lossless
 - Congestion Control: Enhanced Tx and new Rx
 - Trimming
 - In Network Collective
- Network Layer
 - IP v4/v6
 - ECN
- Data Link Layer
 - Negotiation LLDP
 - Link Level Retry LLR
 - Header Efficiency Improvements
- Physical Layer
 - IEEE Compliant 100G Signaling
- AI and HPC Profiles

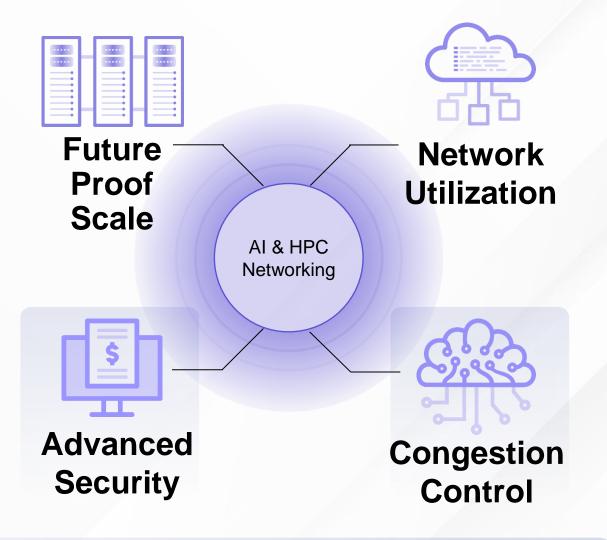
Ultra **Ethernet**

	PHPC


UEC Stack

Applications					
Software APIs (*CCL, MPI, OpenSHMEM)					
Libfabric	UEC extensions				
Transport					
Message Semantics					
Packet Delivery					
Congestion Management	Reliability Modes				
Security					
IP Layer					
Ethernet Link Layer					
LLDP Negotiation	Packet Rate Improvement				
Logical Link Control or other MAC Client					
Link Level Retry					
MAC Control					
MAC					
Ethernet PHY Layer					
FEC Statistics	UEC LL Support				
UEC 100 Gb/s/lane	UEC 200 Gb/s/lane				
PMA PMD					
packets					
Ethernet Fabric					

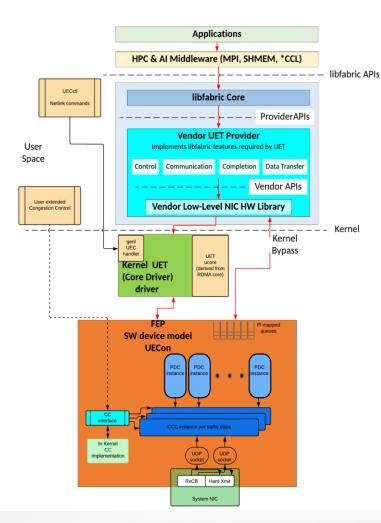
UEC ADDRESSES SYSTEM SCALE & NETWORK UTILIZATION


- Determinism and predictability become more difficult as systems grow
 - SCALE: Network Stability, Fairness, re-convergence times, deadlock avoidance are part of the design
- "Packet spraying" every "flow" may simultaneously use all paths to the destination, vs. flow using a single path
 - Network Util: Achieves more balanced use of the entire network
- From Rigid to Flexible Ordering suites AI workloads
 - API: Supports modernized RDMA operations and APIs and relaxing packet ordering, per workload guidance!
 - TR: Flexible ordering enables packet-spraying in bandwidthintensive large collective operations; without reorder buffers
 - TR: Rigid packet and message ordering uses "go-back-n" for loss recovery, but restricts network utilization and increases tail latencies
 - HW: Minimize state and complexities of Initiator and target
 - JCT: Critical to curtail tail latencies

Ultra **Ethernet**

ADVANCED SECURITY, CONGESTION CONTROL & TELEMETRY

- Congestion
 - Support packet spraying
 - Address incast (e.g., as a result of All-to-All)
 - Optimized response time while maintaining high utilization
 - 1st RTT
- In Network Collective
 - Leverage switch offload to gain higher effective bandwidth, lower latency
 - Applicable to some highly common collective e.g. AllReduce
- Advanced Security
 - Encryption support that doesn't balloon the session state in hosts and network interfaces
 - Similar conditions in AI and HPC


Ultra **Ethernet**

Modern Transport and RDMA Services Needs for AI and HPC

Requirement	UEC Transport	Legacy RDMA	UEC Advantage
Multi-Pathing	Packet spraying	Flow-level multi-pathing	Higher network utilization
Flexible Ordering	Out-of-order packet delivery with in-order message delivery	N/A	Matches application requirements, lower tail latency
AI and HPC Congestion Control	Workload-optimized, configuration free, lower latency, programmable	DCQCN: configuration required, brittle, signaling requires additional round trip	Incast reduction, faster response, future-proofing
In Network Collective	Built-In	NONE	Faster Collective operation, lower latency
Simplified RDMA	Streamlined API, native workload interaction, minimal endpoint state	Based on IBTA Verbs	App-level performance, lower cost implementation
Security	Scalable, 1 st class citizen	Not addressed, external to spec	High scale, modern security
Large Scale with Stability and Reliability	Targeting 1M endpoints	Typically, a few thousand simultaneous end points	Current and future-proof scale

A Strawman for Kernel Support Model

Basic interface similar to IB/RDMA devices

- netlink for device initialization/creation
- OOB communication for connection establishment
- Kernel bypass using direct mapped HW queues
 - State in a Packet Delivery Context
 - Congestion rate managed by a Congestion Control Context
- Core libraries similar to RDMA core
 - possibly derived/refactored
- SW device model along with initial specification

#